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Abstract 
I n  this paper, an algorithm using the well-known 

notch filter and an algorithm using a peak filter are 
proposed t o  estimate the frequencies of sinusoidal sig- 
nals with a given set of Gaussian noise corrupted mea- 
surements y(n) provided that the number o f  sinusoids is 
known in advance. The former  processes y ( n )  such that 
a single fourth-order cumulant of  the notch filter out- 
put is min imum an absolute value, whzle the latter pro- 
cesses y ( n )  such that the same fourth-order cumulant 
of the peak filter output is maximum in absolute value. 
Then the unknown frequencies are obtained from the 
optimum notch filter and the optimum p e a k  filter, re- 
spectively. A performance analysis of the proposed two 
algorithms is then presented followed b y  some simula- 
tion results for a performance comparison of the pro- 
posed algorithms and Swami and Mendel’s SVD low- 
rank approximation method. 

1. Introduction 

Estimation of parameters of sinusoidal signals is a 
problem to estimate frequencies 0 < wi  < ?r and ampli- 
tudes Ai > 0 with a given set of noisy measurements 
modeled as follows: 

P 

y(n) = Aicos(win + di) + ~ ( n )  (1) 
i= l  

where p is the total number of sinusoids, di’s are ran- 
dom phases and w ( n )  is additive noise. This is a 
well defined problem in some statistical signal pro- 
cessing areas such as noise and interference cancel- 
lation and estimation of direction of arrival (DOA) 
of narrowband source signals in sonar and radar ar- 
rays. Usually, frequency estimation is followed by am- 
plitude estimation because the former often resorts to 
a nonlinear search procedure while the latter can be 
solved from a set of linear equations once w;’s are es- 
timated. There have been a number of correlation 
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(second-order statistics) based algorithms reported for 
the estimation of w i ’ s  such as Pisarenko’s harmonic 
decomposition procedure [l], Tufts and Kumaresan’s 
method [a], overdetermined Yule-Walker method [3] 
and maximum-likelihood method [43. Chicharo and Ng 
[5] proposed an adaptive notch filtering approach for 
the enhancement and tracking of sinusoids in additive 
noise. The transfer function of notch filters (IIR filters) 
of order equal to 2 p  is given by 

where 0 L ,B 5 1 and 0 5 (Y < P. The w i ’ s  are obtained 
by solving roots of the numerator polynomial of the 
adaptive notch filter. 

Higher-order (2 3) statistics, known as cumulant,s, 
have been used for frequency estimation of sinusoidal 
signals when measurement noise is Gaussian because 
all higher-order cumulants of Gaussian noise are equal 
to zero. Thus cumulant based frequency estimation 
algorithms [6-81 are insensitive to additive Gaussian 
noise. In this paper, the notch filter and a peak filter, 
using a single fourth-order cumulant are proposed for 
frequency estimation of sinusoidal signals. A perfor- 
mance analysis of the proposed frequency estimation 
algorithms (one using the notch filter and the other 
using a peak filter) is presented followed by some sim- 
ulation results. 

2. Cumulant based harmonic retrieval 
using notch filters and peak filters 

Assume that we are given a set of noisy measure- 
ments y ( n ) ,  TI. = 0,1,t . . , N - 1 modeled by (1) under 
the following assumptions: 

( A l )  The number p of sinusoids is known a priori; 
amplitudes A; > 0 and frequencies 0 < w; < 
T ,  i = I, . . . , p are unknown. 

(A2) Measurement noise w ( n )  is Gaussian with un- 
known statistics. 
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(A3) Phase 4;'s are i.i.d. random variables with a uni- 
form probability density function over [--T, T )  

and they are statistically independent of ~ ( n ) .  

Let C M , ~ ( ~ ~ ,  . . . , kM-1) denote the Mth-order cu- 
mulant function of a non-Gaussian signal e(n) .  We 
need the following proposition on which the twlo fre- 
quency estimation algorithms to be presented axe 
based. 
Proposition 1. Let e(.) be the output of a llinear 
time-invariant system H ( z )  with input y(n)  given by 
(1) under the assumptions (Al) through (A3), i e., 

CO 

e(n> = y(n) * h(n)  = h(k)y(n - k) (3) 
k = - w  

where h( n)  is the impluse response of the system. Then 
' , P  

A. Notch filter based algorithm: 

By Proposition 1, one can infer the following fitct: 

(Fl)  Let e(n)  be the output signal given by (3) of the 
notch filter H p ( z )  with ,/3 = 1 given by ( 2 ) .  'Then 
IC4,e(O,O, 0)l = min{lC4,e(0, O , O ) l }  = 0 occurs 
only when IHp(eJwt)l = 0 for all i ,  i.e., 

ai = -2 . cos(wi)  (5) 

Let e4,e(0,  0,O) denote the fourth-order sample cii- 
mulant associated with C4,e(0, 0,O). By ( F l ) ,  we pro- 
pose the following frequency estimation algorithm: 

Alnorithm 1: 

(SI) Let e(n) be the output signal given by (3) of the 
notch filter H p ( z )  ( p  = 1) given by ( 2 ) .  Find 
the optimum parameters &, i := 1, . . . , p of 
such that 1f?4,e(0, 0,O)l is minimum. 

(S2) Obtain G, by (5), i.e., 

((9 h 

w, = arccos(-2,/2) 

B. Peak filter based algorithm: 

IIR filter with transfer function 
The peak filter used for frequency estimation js an 

where 0 < a < 1 and 0 5 p < 1. The peak filter differs 
from the notch filter in that each pair of complex coni- 
jugate poles (with magnitude a)  are closer to the unit 
circle than the associated pair of complex conjugate 
zeros (with magnitude ap < a ). 

Again, by Proposition 1, one can infer the following 
fact: 

(F2) Let, e(n) be the output signal given by (3) 
of the peak filter V , ( z )  given by (7). Then 
IC4,e(0, 0,O)l = maz{ IC4,e(0, 0,O)l) occurs when 
a i , i - l , . . . , p o f V p ( z )  aregivenby(5) .  

The follovviing frequency estimation algorithm is due to 
(F2): 
Algorithm 2: 

( S l )  Let e(.) be the output signal given by (3) of the 
peak filter & ( z )  given by (7). Find the opti- 
mum parameters Z;,i = l,...,p of V , ( z )  such 
that I C4, e (0 , 0 , 0) I is maximum. 

_- 

h 

(Sa )  Obtain w^i using (6). 

To findl the optimum 2; required in (Sl)  of the pro- 
posed two algorithms, we have to resort to  iterative 
optimization algorithms because 

N-1 e 4 , e ( 0 , 0 , 0 )  = - 1 N-l e4(n) - 3 (i e z ( n ) )  (8) 

n=O n=O 
N 

is a highlhy nonlinear function of ai.  A gradient type 
iterative a,lgorithm is used to  search for the optimum 
a = ( a l l  ' .  . , At the nth iteration, G is updated 
bv 

where 7 ir; a small positive constant and "-" is for Al- 
gorithm 1 and "+" is for Algorithm 2, respectively. 
An initial condition for g(0) is needed to initialize the 
iterative algorithm given by (9).  Swami and Mendel's 
method [6l can be used to  obtain an estimate for each 
wi and the associated ai computed by (5) can be used 
for G(0). 

3. Performance analysis 

To illustrate the performance of the proposed two fre- 
quency estimation algorithms, let us assume that p = 1, 
A=, = 1,  w1 -- 0 . 5 ~  and ~ ( n )  is white with variance U:. 

Then 

(3/8)IW=,(e,Jw1)14 for Algorithm 1 
lC4,e(O, 0, ())I = { (3/8)IV1(eJ'"~)1~ for Algorithm 2 

with the isame optimum solution a1 = a = 0 by (5). 
Figure 1 (a) shows Zogl~IC4,,(O,O,O)l associated with 
the peak filter used by Algorithm 2 for p = 0.9 and 
a = 0.9 (diashed line), 0.95 (dotted line) and 0.99 (solid 
line), respectively, and Figure 1 (b) shows IC4,e(0, 0,O)l 
instead of Z O ~ ~ ~ ~ C ~ , ~ ( O ,  0,O)l associated with the notch 
filter used by Algorithm 1 for p = 1 and a = 0.9 
(dashed line), 0.95 (dotted line) and 0.99 (solid line), 
respective1.y. One can see, from these two figures, that 
a single peak (whose magnitude is larger for larger a )  
in Figure I. (a) and a single notch (/C4,e(O10,0)l = 0) 
in Figure 1 (b) located a t  a = 0 are associated with 
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each curve, and that the larger a ,  the narrower is the 
peak for the former and the notch for the latter. 

It can be shown that 

C 4 , e ( 0 ,  O,0) X C4,e(O, 0,O) + & , w / ( O ,  0’0) (10) 
/. 

where C4,,!(0,0,0) is the fourth-order sample cumu- 
lant of thc Gaussian noise w’(n) in the filter output e(n) 
duc to the presence of w(n ) .  Note that C4,w’(0, 0,O) it- 
self IS a random variable. For the notch filter, it can be 
shown that for a = 0 

where yw#(l) (antocorrelation function of ~ ’ ( n ) )  is given 
by 

Therefor(,, min(lC4 e ( O ,  0,0)\} = 0 is easily smeared by 
e4,,,(0, 0 ,0 )  if u1 >> 0 ( low SNR). On the other hand, 
for the peak filter, it  can be shown that for a = 0 

One can easily infer that  if m~z(lC~,~(O,O,O)1}/0~ = 
(3/S)lV~(e3°.5a)14/c2 >> 1, the optimum a = 0 can be 
accurately estimated even if S N R  is low. For instance, 
maz{IC4,e(0,0,0)1} = 4316 >> a2 = 28.6 for SNR = 
0 dB, p = (2.9 and cy = 0.99. Therefore, the previous 
performance analysis leads to following fact: 

(F3) Algor i thm 2 outperforms Algor i thm 1 for fi- 
nite data, because the former is more robust to 
additive noise than the latter. 

4. Simulation results 

A s  rneritioiied in Section 2 ,  SM method [6] was used 
to provide an initial condition for the proposed two fre- 
quency estimation algorithms. In the simulation, thirty 
independent runs were performed to compute the mean 
square error ( M S E )  defined as 

30 P 

M S E  E - C{C(Xj - f i ) 2 }  
3 0 j = l  i=l 

(111 

A 

where f i  = wi/27r and f;j is the obtained estimate for 
f; at  the jth run. Two  sets of simulation results ( p  = 1 
and p = 2,  A1 1 A2)  for measurement noise ~ ( n )  as- 
sumed to be white Gaussian were obtained using Al- 
gorithm l with p = l and cy = 0.99 and Algor i thm 
2 with p = 0.9 and a = 0.99, respectively. 

Let , S N R  = A:/(2a$) where ui is the variance 
of tu(.). Table 1 shows the simulation results for 
p = 1, A1 = 1,  f i  = 0.2, N = 1024, 2048, 4096 

and SNR = 0, 5, 10, 15, 20 dB. From this ta- 
ble, one can see that Algor i thm 2 performs best, SM 
method performs second and Algor i thm 1 performs 
worst. On the other hand, Table 2 shows the corre- 
sponding results for p = 2, A1 = A:! = 1, f l  = 0.1 and 
fi = 0.2. From Table 2, one can see that Algor i thm 
2 performs best except for the case that SNR = 0 dB 
when N = 1024 and 2048 while SM method performs 
best for this case. These simulation results indicate 
that the latter may perform better than the former for 
small N and low SNR. However, Algor i thm 1 always 
performs worst as predicted by (F3), and its perfor- 
mance for low SNR may not improve even when N is 
increased (see the results for N = 2048 and 4096 when 
S N R  = 0 dB, 5 dB and 10 dB in Table 2). The rea- 
son for this is that although N was doubled, the notch 
of mi~{~C4,,(0,0,0)~} = 0 in some realizations was 
severely smeared by C+,,(o, 0,O) z C+(O, 0,O) at the 
vicinity of (a1, = (-2cos(0.27r), - 2 c o s ( 0 . 4 ~ ) ) ~  
where w’(n) was the Gaussian noise in the notch filter 
output due to measurement noise w(1z). 

5 .  Conclusions 

h ,-. 

We have presented two frequency estimation algo- 
rithms with a given set of noisy sinusoidal signals un- 
der the three assumptions ( A l )  through (A3).  Al- 
go r i thm l uses the notch filter and Algor i thm 2 
uses the peak filter, while the former tries to minimize 
but the latter tries to maximize the same single abso- 
lute fourth-order cumulant. A performance analysis for 
the proposed two algorithms was also presented. Then 
some simulation results obtained by the proposed two 
algorithms and Swami and Mendel’s method were pre- 
sented for a performance comparison. The presented 
simulation results support that Algor i thm 2 performs 
best for the case of p = 1, but for the case of p = 2 it 
performs best except that when N is small and S N R  
is low, Swami and Mendel’s method performs best. 

6 .  
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Figure 1. (a) l0gl0lC4,~(O,O,O)l associated with the peak filter for p == 0.9 and a = 0.9 (dashed line), 0.95 (dotted 
line) and 0.99 (solid line), respectively; (b) IC4,,(0,0,0)l associated with the notch filter for ,O = 1 and a = 0.9 
(dashed line), 0.95 (dotted line) and 0.99 (solid line), respectively. 

_- 20 dB 
15 dB 

1024 11OdB 

1.4042 0.0035 0.5792 
1.5070 0.0041 2.0163 
1.8507 0.1120 100.93 1024 ~~1 

4.4869 2.3268 8.3789 
20 d B  0.0026 0.0003 0.0478 

1 5 dB 4.8170 
0 dB I 86.835 

4096 

_I_ 

0.0266 1394.9 
148.69 3034.0 

Table 1. MSE’s associated with the SM method, Al- 
gorithm l (using the notch filter) and Algorithim 2 
(using the peak filter) for p = 1 and fi = 0.2. 

__ 
15 dB 

2048 I-iOdB 
5 dB 

0.3233 0.0011 1.7446 
0.5162 0.0023 42.250 
2.3045 0.0066 269.14 

1 20 dB I 0.2858 I 0.0010 I 0.5308 I 

1-3 d B  i 39.381 i 41.777 i 1605.0 I 

Table 2. IMSE’s associated with the SM method, Al- 
gorithm l. (using the notch filter) and Algorithm 2 
(using the peak filter) for p = 2, fi = 0.1 and fi = 0.2. 
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